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Abstract

We present VoxelKP, a novel fully sparse network ar-
chitecture tailored for human keypoint estimation in Li-
DAR data. The key challenge is that objects are dis-
tributed sparsely in 3D space, while human keypoint detec-
tion requires detailed local information wherever humans
are present. We propose four novel ideas in this paper. First,
we propose sparse selective kernels to capture multi-scale
context. Second, we introduce sparse box-attention to focus
on learning spatial correlations between keypoints within
each human instance. Third, we incorporate a spatial en-
coding to leverage absolute 3D coordinates when projecting
3D voxels to a 2D grid encoding a bird’s eye view. Finally,
we propose hybrid feature learning to combine the process-
ing of per-voxel features with sparse convolution. We eval-
uate our method on the Waymo dataset and achieve an im-
provement of 27% on the MPJPE metric compared to the
state-of-the-art, HUM3DIL, trained on the same data, and
12% against the state-of-the-art, GC-KPL, pretrained on a
25× larger dataset. To the best of our knowledge, VoxelKP
is the first single-staged, fully sparse network that is specif-
ically designed for addressing the challenging task of 3D
keypoint estimation from LiDAR data, achieving state-of-
the-art performances. Our code is available at https:
//github.com/shijianjian/VoxelKP.

1. Introduction

Human pose estimation is a critical area of research with
applications spanning computer vision, robotics, human-
computer interaction, and augmented/virtual reality. Previ-
ous works [21, 30, 33] are mostly based on 2D images and
videos. Compared to regular RGB input, LiDAR sensors
provide detailed 3D structural information by measuring the
distance to objects using laser light. Apart from its robust-
ness under occlusion and illumination changes, LiDAR also
offers privacy protection as it can not retain facial details. In
recent years, significant progress has been made in 3D ob-

ject detection from LiDAR point clouds, with methods like
PointRCNN [24], Part-A2 [25], and PV-RCNN [26] achiev-
ing impressive results, while human pose estimation from
LiDAR is still an open research problem with much room
for improvement. Typically, object detection methods focus
on capturing objects scattered sparsely across the 3D space
while the keypoints tend to be distributed densely within
localized regions around the human body. This fundamen-
tal discrepancy in the context captured by existing detectors
limits their suitability for precise 3D keypoint prediction
due to the lack of fine-grained spatial information. To ad-
dress this gap, we aim to extend the success of 3D object de-
tection to 3D keypoint estimation for Lidar point cloud data
by introducing novel components to preserve fine-grained
spatial information.

This work identifies the importance of learning local
dense features to capture the intricate spatial relationships
between keypoints for precise human pose estimation. For
this purpose, we introduce the VoxelKP architecture. Vox-
elKP is a novel, fully sparse neural network tailored specif-
ically for human keypoint estimation within LiDAR point
clouds. It combines local feature extraction and global con-
text modeling to achieve accurate human pose prediction
from LiDAR scans. To be specific, we introduce four key
components that play a pivotal role in enhancing local fea-
ture learning for keypoint estimation:
• Sparse Selective Kernel (SSK) Modules: These mod-

ules are designed to selectively aggregate multi-scale 3D
features efficiently extracted at sparse voxel locations. By
employing various receptive field kernels and a selection
mechanism, the SSK modules significantly improve spa-
tial context. This is crucial for the accurate estimation of
keypoints, as it allows the model to understand the spatial
relationships between keypoint locations.

• Sparse Box-Attention Modules: Our approach incorpo-
rates localized box-based self-attention to partition the
sparse voxel space into non-overlapping box regions.
This strategy enables the model to capture dependencies
between voxels within each box. By doing so, it ex-
tracts fine-grained local features necessary for resolving
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densely distributed keypoints. This focused modeling of
intricate spatial relationships between keypoints is instru-
mental in achieving precise human pose estimation.

• Spatially Aware Multi-Scale BEV Fusion: To retain the
3D spatial relationships between keypoints, we introduce
a spatially aware multi-scale bird’s eye view (BEV) fu-
sion technique. This innovative approach encapsulates
3D spatial information into 2D representations, thereby
improving the accuracy of keypoint estimation. It en-
sures that the model considers spatial information when
predicting keypoints, enhancing the overall performance.

• Hybrid Feature Learning In addition to the above com-
ponents, we propose the use of hybrid feature learning.
We combine the results of two parallel branches in the
architecture: per-voxel computations using MLPs and
sparse convolutions that process voxel-neighborhoods.
To the best of our knowledge, VoxelKP is the first single-

staged, fully sparse network that is specifically designed for
addressing the challenging task of 3D keypoint estimation
from LiDAR data, achieving 27% on the MPJPE metric
compared to the current state-of-the-art trained on the same
data.

2. Related Work

2.1. Deep Learning on Point Clouds

Many neural network architectures have been adapted for
processing point clouds. Earlier methods like VoxNet [20]
applied 3D CNNs to voxel grids for object classification.
PointNet [22] was one of the first works to operate directly
on point clouds using MLPs and max pooling to extract
global features of entire scenes represented by point clouds.
Follow-up works like PointNet++ [23] introduced hierar-
chical and localized feature learning. Meanwhile, another
branch of works such as PointCNN [14] and KPConv [32]
introduced novel convolutional operators for learning fea-
tures on the unordered point clouds, overcoming the limita-
tions of typical convolutions for this irregular data type.

Typical LiDAR-generated point clouds contain more
than 100, 000 points, making point-by-point computations
overwhelming due to the massive data scale. Voxel-
Net [41] proposed a voxel feature encoding (VFE) layer
as a workaround for the high computational and mem-
ory issues brought by point-by-point computations. Mean-
while, sparse and submanifold sparse convolution opera-
tions [4] exploit sparsity in the voxel grid to reduce com-
putations. SECOND [35] introduced an efficient sparse
convolutional approach that benefits from the sparse oper-
ations. Following SECOND, subsequent works like Point-
Pillars [11], 3DSSD [36], PV-RCNN [26], CenterPoint [38]
further advanced sparse convolutional detection on point
clouds, introducing ideas like pillar encoding for faster
detection, multi-scale detection stacks with anchor boxes,

shared voxel encoders, and detecting small objects by cen-
ter points. VoxelNeXt [2] further demonstrates a fully
sparse voxel-based method without sparse-to-dense conver-
sion or NMS post-processing. However, these approaches
are targeted at improving bounding box localization accu-
racy, which does not require fine-grained spatial features for
precise keypoint estimation tasks. Instead, We propose Vox-
elKP, a novel sparse convolutional architecture tailored for
learning discriminative local features from sparse LiDAR
data for accurate human pose estimation.

2.2. Human Pose Estimation on Point Clouds

Human pose estimation has been extensively studied in
images, with methods like DeepPose [33], Stacked Hour-
glass [21], and HRNet [30] achieving high accuracy on
benchmarks like COCO-wholebody [8]. However, com-
pared to RGB images, point clouds provide explicit 3D
structural information about the shape and depth of ob-
jects. Shotton et al. [27] pioneered point cloud human
pose estimation from a single depth image. Recent works
such as [19, 42] proposed a deep learning-based 3D hu-
man pose estimation from depth images. Waymo [31] has
released keypoint annotations for LiDAR-collected point
cloud scenes, while only 3% of the frames are annotated
with keypoint human poses. Due to the scarcity of the
keypoint annotations within LiDAR point cloud data, many
works have taken semi-supervised or weak-supervised ap-
proaches to compensate for the limited availability of la-
beled 3D pose data. For example, some works [39, 40] took
a multi-modal approach to utilize the enriched image anno-
tations to assist the recognition from point clouds. Weng
et al. [34] proposed an unsupervised approach that gener-
ates pseudo ground truth without using annotated keypoint
data, along with a fine-tuning approach that pretrains the
model with synthetic data then fine-tunes on the training
set. A concurrent work [37] adopted a fine-tuning strat-
egy that used a frozen backbone pretrained on a large-
scale dataset as a feature extractor, achieving plausible per-
formance. In general, multi-person pose estimation from
sorely point clouds remains relatively unexplored due to
the lack of ground-truth 3D human pose annotations. This
work proposes a single-staged keypoint estimation method
with only LiDAR point clouds, achieving comparable per-
formances without extra training data.

3. Method
LiDAR point clouds typically contain sparsely distributed
objects that occupy only small regions of the full 3D space.
While the distribution of humans in space is sparse, in con-
trast, human keypoints require dense information wherever
a human is present. To handle this density variation, we aim
to improve feature learning in the regions where keypoints
need to be located and detailed information is required. In
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this section, we first present the formulation of the task, then
introduce the key components proposed in our network, and
finally elaborate on the details of the network architecture.

3.1. Problem Formulation

Given a 3D point cloud scanned by LiDAR sensors, our
goal is to estimate the 3D locations of K keypoints that
represent the human pose. Let the input point cloud P be
RN×C where N is the number of points and C is the num-
ber of features (e.g. x, y, z, intensity, elongation). We use a
sparse voxel representation to represent point clouds, which
consists of two separate tensors: one feature tensor RV×C

and one index tensor RV×4 where V is the number of non-
empty voxels and 4 dimensions are used for batch sample
index and the three coordinates of each voxel. We define
the ground truth pose for the ith human as a set of 3D key-
point locations Gi = {g1i , g2i , ..., gKi } where gki ∈ R3 is the
location of the kth keypoint in the global coordinate frame.
The set of K keypoints corresponds to anatomical joints of
interest such as shoulders, elbows, wrists, hips, knees, and
ankles. Our objective is to predict the 3D keypoint loca-
tions from the input point cloud, i.e. to learn a function F
such that Ĝ = F (P ), where Ĝ ∈ RM×K×3 is the tensor of
predicted 3D keypoint locations of M humans.

3.2. Key Components

See Fig. 4 for our final architecture VoxelKP. First, the
scene is voxelized into a sparse 3D grid. Then the sparse
grid goes through multiple 3D blocks to extract multi-scale
3D sparse features, followed by a projection into a sparse
2D grid, and 2D blocks. Finally, multiple prediction heads
output the keypoints. The proposed architecture contains
four key components for enhancing the spatial localiza-
tion accuracy of keypoints. Specifically, we employ spa-
tially aware sparse selective kernel modules and sparse box-
attention modules in our network to improve the represen-
tational power to encode and localize the fine-grained key-
point features. In addition, we use a spatially aware multi-
scale BEV fusion method to encode the spatial information,
along with a multi-scale fusion to understand the context
across varying densities. Lastly, we use a hybrid feature
learning approach to capture both fine-grained per-voxel
details and relatively coarse-grained local neighborhood in-
formation.

3.2.1 Sparse Selective Kernel Module

Inspired by [5, 13], we propose the sparse selective kernel
(SSK) module that selectively aggregates multi-scale fea-
tures to improve spatial context. The SSK modules perform
spatial attention on a 3D sparse voxel space, where the at-
tention specializes the receptive field at each position using
a data-driven kernel selection. As demonstrated in Fig. 1,
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Figure 1. Sparse selective kernel module with one sample input.
The SSK module selects the best kernels from different receptive
fields with a softmax-based channel-wise attention mechanism.

we first generate a set of sparse 3D submanifold convolu-
tion kernels with varied receptive field sizes of 3×3×3 and
5 × 5 × 5 . A submanifold convolution computes output
values only if the convolution kernel is centered on a non-
empty voxel, i.e., the number of non-empty voxels remains
the same. These operations are applied to sparsely sam-
pled voxel locations, extracting multi-scale features while
remaining efficient. Next, the features from each kernel are
fed into a selection module that compresses the spatial di-
mension by a global average pooling (GAP), and then a fea-
ture squeeze and expansion are applied. In our implemen-
tation, Z is 25% of C. The resulting tensor would then be
used to weigh the features after a softmax activation. We de-
note a voxel position as p, the set of voxel positions within
a voxel grid as Ps, and the feature corresponding to voxel
position p as fp. The sparse GAP F̄s can be obtained by:

P̄s = {(xp, yp, zp)|p ∈ Ps},

F̄s = { 1

|SP̄ |
∑
p∈SP̄

fp|p̄ ∈ P̄s}, (1)

where |SP̄ | is the number of valid voxels for the sample s
in a batch. This produces channel-wise attention weights,
allowing the network to selectively emphasize or suppress
each kernel’s features. The multi-scale local features can
then be obtained by combining weighted features from all
kernels through averaging.

3.2.2 Sparse Box-Attention Module

We apply box-based self-attention. Unlike the previous
works that tried to capture a wider range of global features
with self-attention methods for segmentation tasks [9, 10],
we focus on local feature extraction to resolve the densely
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Figure 2. Sparse box-attention module. This attention mechanism
selects the voxel features that correspond to one box partition re-
ferring to the index tensor and then performs self-attention on the
selected voxels. The functions f,g,h, and j are linear layers.

distributed keypoints in local regions. The key idea is to par-
tition the sparse 3D voxel space into non-overlapping boxes.
Within each local box, we apply self-attention to capture
dependencies between the voxels inside the box. The fea-
tures in each box go through a linear layer for the queries
Q, keys K, and values V , where Q,K, V ∈ Rkb×h×d and
kb, h, d are the number of valid voxels in the b-th box, at-
tention heads, and feature dimensions. Since we are using
sparse tensor representations, each box partition may con-
tain a varying number of voxels. Referring to [9], we then
compute the attention map by the following equation:

Attentioni,h =

kb∑
j=1

softmax(Qi,h ·Kj,h)× Vj,h. (2)

We then further apply an additional projection layer on the
obtained attention map, as shown in Fig. 2.

3.2.3 Spatially Aware Multi-Scale BEV Fusion

Compressing features into bird’s eye view (BEV) maps is a
common practice for object detection [1, 35]. For a sparse
3D voxel grid of size C ×X × Y × Z, we use C to denote
the number of features per voxel, X and Y as the spatial ex-
tent in the ground plane, and Z as the up axis. Starting with
a sparse 3D voxel grid, previous works such as [2] simply
ignore the height information by summing the features of
all voxels that share the same position on the ground plane
(the same x and y coordinates). However, different from ob-
ject detection tasks, height information is essential for key-
point estimation tasks to precisely locate each keypoint. A
reasonable approach is to directly deploy 3D feature maps.
Unfortunately, this direct 3D approach does not lead to a
decent performance as training does not converge well, as
shown in Tab. 4. We, therefore, propose a simple spatially
aware multi-scale BEV fusion approach for fusing features

from multiple encoder layers in a way that retains spatial
information, as illustrated in Fig. 3.
Height Encoding Transforming 3D data into BEV is of-
ten used in 3D object detection and segmentation tasks,
for reducing the dimensionality of point clouds and making
them more manageable for processing. An object detection
method may project the 3D voxel grid to a 2D BEV repre-
sentation by adding features from voxels that share the same
x and y position, losing the information about which height
a feature was taken from. Instead, we use a height encoding
method. Specifically, we compress the height dimension to
1 using convolution kernels of size (1, 1, h) where h is the
height of each 3D voxel grid. Meanwhile, we increase the
number of resulting channels to retain more spatial details
and features from the 3D representation. This provides a
richer representation for the 2D regression heads to work
with.
Multi-scale Feature Fusion After obtaining z multi-scale
height-encoded BEV maps from the last few stages of the
network, we then fuse those feature maps to create a fea-
ture map that contains multi-scale features. Unlike work-
ing with dense tensors, the direct interpolation of the fea-
ture maps in the sparse case is computationally complex,
as it requires specialized algorithms to efficiently navigate
through the predominantly empty voxels to find and inter-
polate the adjacent non-empty voxels. Instead, we directly
modify the feature position of the sparse tensor by multiply-
ing the voxel position by its scale r. To avoid overlapping
feature position of (px ∗ 2r, py ∗ 2r) r ∈ {0, 1, 2...} dur-

Multi-Scale Sparse
feature maps Height Encoding

(w/ increased channels)

Feature Alignment
(w/ scale-offset)

Multi-Scale
Feature Fusion

Spatial-Aware Multi-Scale BEV Fusion

Figure 3. Spatially aware multi-scale BEV Fusion module. Note
that we use a dense representation for a better visual illustration of
the method.

4



STEM Module

SparseConv3D
stride=2,k=5

SSK Module

SSK Module

Spatial Distillation
(BEV)

Spatial Distillation
(BEV)

Spatial Distillation
(BEV)

SubMConv2D

SparseConv2D

x2

x4

Prediction
Heads

Input Outputs

VoxelKP

Voxelization

M
LP

SparseConv3D
stride=2,k=3

SSK Module

SSK Module

M
LP

SparseConv3D
stride=2,k=3

M
LP

SSK Module

Sparse Box
Attention

SSK Module

Sparse Box
Attention

SparseConv3D
stride=2,k=3

M
LP

SSK Module

Sparse Box
Attention

SSK Module

Sparse Box
Attention

Depth-Aware
Multi-Scale
BEV Fusion

Figure 4. The overall architecture of the VoxelKP.

ing the scale multiplication, we align the xy-plane positions
(px, py) using scale offsets (px ∗ 2r + r, py ∗ 2r + r).

By stacking the r-scaled feature maps together, we ob-
tain a multi-scale 3D feature map with a height of r. To ob-
tain a BEV feature map, instead of collapsing with 1×1×r
convolutions, we simply apply an intuitive scaling for each
scale of the feature map. The scaling factor is proportional
to the height (scale) of the 3D feature map. The compressed
sparse features F̄c and their positions P̄c are obtained as:

F̄ = {fp · r̂p|p ∈ Pc}, P̄c = {(xp, yp)|p ∈ Pc},

F̄c = {
∑
p∈Sp̄

f̄p |p̄ ∈ P̄c}, (3)

where F̄ contains the scaled features by the scale offsets and
Sp̄ = {p|xp = xp̄, yp = yp̄, p ∈ Pc} contains voxels that
are put onto the same 2D position p̄. r̂p is the normalized
height position of each individual feature.

3.2.4 Hybrid Feature Learning

The convolutional operations focus on understanding spa-
tial hierarchies and local geometric structures to extract lo-
cal neighborhood information. Concurrently, inspired by
the previous point-voxel networks [17, 26], we include an
MLP branch for each stage. The integration of an MLP
branch alongside a convolutional branch is a strategic ap-
proach to capture both fine-grained per-voxel details and
relatively coarse-grained local neighborhood information.
Each MLP branch is composed of three sequential blocks,

each consisting of a linear layer, batch normalization, and
a ReLU activation function. The number of channels in
each linear layer is set to match the channels of the in-
coming tensor. We then merge the output features from
the MLP and convolutional branches through element-wise
summation to create hybrid features of the per-voxel and
per-neighborhood information. This hybrid feature learn-
ing approach is deployed to retain and process fine details
across the voxel space, which is critical for the accurate lo-
calization of keypoints.

3.3. Network Architecture

We propose a single-stage, fully sparse neural network,
designed for human pose estimation within LiDAR point
clouds. The architecture is demonstrated in Figure 4. The
input is a point cloud RN×C where N is the number of
points and C is the number of features (e.g. x, y, z, inten-
sity). We voxelize the point cloud into a sparse voxel rep-
resentation. Our method consists of an input stem network
and four stages with gradually decreased feature map size,
where each stage reduces the spatial shape of the sparse
voxel space by a factor of two. The input stem network
is a simple stack of convolution layers, as shown in Ap-
pendix A.1, to extract low-level features from the voxelized
point cloud. Next, we apply our proposed SSK modules in
our next two stages to better capture the multi-scale local
features. We further include window-based self-attention
modules for our last two blocks to emphasize local-region
features. Note that we do not increase the number of chan-
nels for the last three stages. For each stage, we further
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Method Dataset Description MPJPE cm.

With Extra Training Data

Zheng et al. [40] (CVPR 22) Internal dataset + Waymo v.? Trained on 155, 182 objects from internal data. Generated pseudo la-
bels from 2D image labels.

10.80

GC-KPL [34] (CVPR 23) Waymo v.? Pre-trained on synthetic data. Fine-tuned on ground truth 11.27
Waymo v.? Pre-trained on 200, 000 Waymo objects. Fine-tuned on ground truth 10.10

Without Extra Training Data

HUM3DIL [39] (CoRL 22) Waymo v.1.3.2 Randomly initialized 12.21
VoxelKP Waymo v.1.4.2 Randomly initialized 8.87

Table 1. Benchmark results. The numbers in the table are taken from their corresponding papers aside from HUM3DIL, which is taken
from GC-KPL paper. It is unclear about the exact training dataset used for Zheng et al. and GC-KPL. Waymo v1.3.2 and Waymo v1.4.2
share the same data for keypoint estimation task.

include a side MLP branch for learning hybrid features. We
then convert the resulting 3D feature maps from the last
three blocks to 2D spatial-encoded BEV representations.
Note that we increase the number of channels for the BEV
representation to compensate for the information loss of the
BEV conversion. These 2D features are further refined with
2D convolutions to aggregate spatial context. In the end, we
obtain the estimated keypoints Ykp ∈ RK×3 and the corre-
sponding predicted visibilities Ykp ∈ RK , where K is the
number of keypoints.

4. Experiments

4.1. Implementation Details

Dataset We use the Waymo v1.4.2 dataset [31]. During the
training, we merged “Pedestrian” and “Cyclist” classes to-
gether as a “Human” class. Note that there are only 8, 125
human examples with keypoint annotations whilst over 1
million bounding box annotations. We therefore removed
the points inside those bounding boxes without keypoint
annotations. Each human object is labeled with 14 3D key-
points (nose, left/right shoulders, left/right elbows, left/right
wrists, left/right hips, left/right knees, and left/right ankles,
head).
Network The architecture of the network is composed of a
stem module followed by four stages, with output channels
set to 64, 128, 256, 256, and 256, respectively. Given the
high resolution (e.g. 1504 × 1504 × 61) of the voxelized
point cloud input, we employ larger sparse convolution ker-
nels (kernel size k = 5) for the downsampling block in both
the stem module and the initial stage. For the subsequent
three stages, we revert to a smaller kernel size (k = 3). To
compensate for the information loss in the BEV projection,
we increased the channels from 256 to 384 during this pro-
cess.
Training We use the point cloud range of the Waymo
dataset as (150.4m, 150.4m, 6m) and we transform
them into voxel representations by a voxel size of

(0.1m, 0.1m, 0.1m). We directly use the global keypoint
locations without any encoding. Due to the limited number
of training samples, we first apply a ground truth sampling
technique [3, 35] to concatenate target objects from other
frames into the sampled frames. Next, we apply global
augmentations on the whole point cloud, including random
flips on the x and y axes, random scale of the range of
[0.95, 1.05], and random rotation ranged from [−π/4, π/4].
Additionally, we apply local augmentations on each anno-
tated object, including the random scale of the range of
[0.95, 1.05], random rotation ranged from [−π/20, π/20],
random frustum dropout [6] with an intensity range from
[0., 0.2], and random noise around the object. Our model
is trained using AdamW [18] optimizer plus OneCycle [29]
learning rate scheduler to mitigate overfitting [28]. Specifi-
cally, we use a learning rate of 0.003, weight decay of 0.01,
and 0.9 momentum. Aside from the regular regression loss
and heatmap loss, we include a skeleton regularization loss
to make the model aware of the spatial relationships of key-
points. The details of the used loss functions can be found
in Appendix A.2.

part MPJPE OKS@AP PEM

Head 0.0570 0.6393 0.1569
Shoulders 0.0669 0.8917 0.1563
Elbows 0.0948 0.7197 0.1746
Wrists 0.1467 0.3791 0.1987
Hips 0.0670 0.9533 0.1576
Knees 0.0820 0.8586 0.1660
Ankles 0.1084 0.7581 0.1765

All 0.0887 0.7300 0.1695

Table 2. Full evaluation of VoxelKP.

4.2. Benchmark Methods

There is a limited number of relevant research for this task.
Most of the prior works utilize additional training data be-
yond the 3D keypoint data within the Waymo dataset. To
provide a fair comparison, we need to consider approaches
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Figure 5. A visual demonstration of our baseline model (top) and the proposed VoxelKP (bottom). Our VoxelKP offers improved keypoint
estimation with precise locations and fewer false positives. The insets are color-coded according to the legend in the figure. In the green-
colored insets, a comparison with the ground truth is shown, with ground truth in red and predictions in blue.

that use extra data and those that rely solely on Waymo
ground truth separately. Zheng et al. [40] adopted a pseudo-
label generation approach to provide stronger supervision.
It utilizes an internal dataset as training data and uses the
Waymo dataset for evaluation. GC-KPL [34] pre-trains its
backbone model with extra synthetic or real-world data,
then fine-tunes the model with the full Waymo training set.
Given the reliance on extra data in these methods, we con-
sider the LiDAR-only version of HUM3DIL [39] as our pri-
mary competitor. HUM3DIL shares the exact same training
data as our approach, allowing a direct comparison of tech-
niques.

4.3. Results

Previous methods like GC-KPL use a subset of the vali-
dation data for evaluation, while we evaluate our method
with the full validation set for better reproducibility. We re-
port MPJPE on matched keypoints for our benchmark, fol-
lowing prior works. As shown in Tab. 1, we outperform
the baseline HUM3DIL by approximately 27% in MPJPE.
Our approach achieves state-of-the-art results among meth-
ods trained solely on Waymo ground truth. We also sur-
pass the approaches leveraging extra synthetic data, beating
Zheng et al. with synthetic pseudo labels by around 18%
and GC-KPL with synthetic point clouds by about 21%.
We achieve better performances as the SOTA GC-KPL ap-

proach which is pre-trained on 200, 000 real-world samples
by about 12%. Overall, we demonstrate significant im-
provements over both the baseline solely using Waymo 3D
keypoint data, as well as other techniques relying on extra
data. A visual demonstration is presented in Fig. 5.

In addition, we report the full spectrum of the evalua-
tion in Tab. 2, including MPJPE, OKS@AP, and PEM. The
details for each metric can be found in Appendix A.3.

5. Ablations

We demonstrate the effectiveness of each proposed compo-
nent in Tab. 3. We use the architecture of VoxelNext [2]
as the baseline model, then gradually update the baseline
model with the proposed components. We start with Voxel-
Next for two reasons: 1) it is one of the state-of-the-art point
cloud object detection models with a fully sparse architec-
ture design, and 2) it provides a good balance between com-
putational costs and performance. We report the MPJPE for
our ablations. The results indicate all the individual com-
ponents can contribute to improving keypoint estimation.
Next, we further present the ablation studies to show the
alternative design choices of the individual component.
Spatially Aware BEV The use of the BEV representation
significantly simplifies the detection problem by collapsing
the 3D voxel space into a 2D feature map. This ablation
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Components MPJPE PEM

Spatial BEV SSK Attention Hybrid Feat. head shoulders elbows wrists hips knees ankles all all

0.0631 0.1486 0.2313 0.2395 0.1142 0.1431 0.1932 0.1612 0.2350
✓ 0.0721 0.0995 0.1456 0.1904 0.0870 0.1277 0.1928 0.1304 0.2069
✓ ✓ 0.0603 0.0848 0.1232 0.1715 0.0759 0.1084 0.1608 0.1118 0.1889
✓ ✓ ✓ 0.0558 0.0604 0.0903 0.1679 0.0620 0.1091 0.1834 0.1039 0.1791

✓ ✓ ✓ ✓ 0.0570 0.0669 0.0948 0.1467 0.0670 0.0820 0.1084 0.0887 0.1695

Table 3. Overall ablation for the effectiveness of each component.

evaluates the effectiveness of the proposed spatially aware
BEV module. We first evaluate the direct use of a naı̈ve 3D
representations, followed by experiments with the spatially
aware BEV. The findings, as shown in Tab. 4, indicate that
our spatially aware BEV yields superior performance. The
direct deployment of the 3D representation results in severe
overfitting and, therefore, low performance. In addition, we
also show that increasing the number of channels during the
BEV projection can effectively improve the model perfor-
mances, by compensating for information loss during pro-
jection. Overall, our spatially aware BEV strikes a balance
that retains spatial acuity beyond basic BEV for resolving
keypoint relationships while avoiding the complexity of full
3D convolutions.

cp. head shoulders elbows wrists hips knees ankles all

3D - 2.4620 2.4559 2.4492 2.4449 2.4394 2.4264 2.419 2.4422
Ours ✗ 0.0688 0.0714 0.0982 0.1657 0.0723 0.1029 0.1595 0.1053
Ours ✓ 0.0570 0.0669 0.0948 0.1467 0.0670 0.0820 0.1084 0.0887

Table 4. Ablation study for the spatially aware BEV module. Cp.
denotes if to expand the number of channels to compensate for the
information loss during the 2D projection.

Different Attention Mechanism This ablation study as-
sesses the effectiveness of the box-attention mechanism
within point cloud processing. Recent advancements, such
as the stratified self-attention [9], focus on aggregating
long-range contextual information, particularly beneficial
for segmentation tasks. However, for keypoint estimation
tasks, capturing global dependencies is less crucial. Instead,
our approach utilizes local box-attention, which concen-
trates on adjacent local regions. The results, as presented
in Tab. 5, demonstrate that local box-attention outperforms
other methods. Interestingly, we found that the stratified at-
tention mechanism could slightly impair performance. We
suspect that the box-based approach concentrates on areas
most relevant to each keypoint location, whereas long-range
attention may cause the network to overlook local, dense de-
tails. As a result, the box-based attention mechanism allows
efficient modeling of local keypoint distributions, without
excessive computation or over-smoothing from global ag-
gregation.

head shoulders elbows wrists hips knees ankles all

w/o 0.0659 0.0956 0.1405 0.1855 0.0831 0.1077 0.1515 0.1181
stratified 0.0650 0.0911 0.1347 0.1995 0.0819 0.1245 0.1919 0.1266
box 0.0570 0.0669 0.0948 0.1467 0.0670 0.0820 0.1084 0.0887

Table 5. Different self-attention methods. w/o denotes no attention
applied.

6. Conclusion

In this work, we proposed a new 3D fully sparse neural net-
work for estimating dense human poses from point clouds.
Our method combines several novel components including
sparse selective kernel layers, box-attention layers, spatially
aware multi-scale BEV fusion, and hybrid feature learning
to accurately predict human body keypoints. Experiments
on the Waymo dataset demonstrate the advantages of our
approach compared to prior art and we demonstrate im-
proved performance compared to other approaches trained
on the same data as well as other approaches trained with
additional data.

Despite these advancements, we further identify certain
areas for future exploration and improvement. As men-
tioned above, this work used a small volume of training
data, but it could benefit from a larger-scale dataset. While
we focus on single-frame point clouds, future work could
leverage temporal information across sequences of LiDAR
point clouds. Additionally, instead of the straightforward
estimation of keypoints, future work may adopt inverse
kinematics to include physical constraints on human body
movement. Aside from refining estimated keypoint loca-
tions, this may especially be useful to handle real-world
challenges such as occlusion within motion.
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VoxelKP: A Voxel-based Network Architecture for Human Keypoint Estimation
in LiDAR Data

Supplementary Material

A. Technical Details

This section presents additional technical details of the net-
work, loss functions, and metrics used.

A.1. Supplementary Network Details

The architecture of the stem module and prediction heads
are presented in Figs. 6 and 7. The stem module includes
CONV-BN-ReLU blocks with skip connections to extract
low-level features. It contains one downsampling layer to
obtain a smaller feature map. The model uses seven predic-
tion heads. These heads predict: 1) the size of the bounding
box, 2) the rotation of the bounding box, 3-5) the location
of the box center and keypoints along the x, y, and z axes,
6) the visibility of keypoints, and 7) the Intersection over
Union (IoU). Notably, we incorporate the IoU prediction to
enhance performance, following [7].

SubMConv3D

SparseConv3D
stride=2,k=5

BasicBlock

BasicBlock

BasicBlock

BasicBlock

SubMConv3D

BN

SubMConv3D

ReLU

BN

ReLU

BN

ReLU

Figure 6. The architecture of the stem module.

A.2. Losses

We use three types of losses in our work including the skele-
ton loss. Notably, the ground truth annotations are con-
verted into the same sparse representation as the predictions
for loss computation.

Heatmap Loss Our network outputs a set of heatmaps,
one per class. This heatmap encoding allows our model
to classify and localize objects in 3D space simultaneously.
In the training phase, we assign positive heatmap indices

SubMConv2D

BN

ReLU

SubMConv2D

Figure 7. The architecture of prediction heads.

based on ground truth annotations. Specifically, we iden-
tify the voxel closest to the annotated bounding box cen-
ter and mark that voxel with a positive heatmap value. We
supervise these heatmaps using an adapted focal loss func-
tion [2, 12, 16]. With the annotated and predicted heatmaps
I and Î , we have:

FL(I, Î) =
−1

N

C∑
c=1

V∑
v=1

{
(1− Î)α · log(Î), if I = 1

log (1− Î) · Îα · (1− I)β , otherwise
,

(4)
where N , C, V are the batch size, number of channels,
and number of voxels, respectively. α and β are the hyper-
parameters to weigh each voxel. We use α = 2 and β = 4
in this work, following [12].

L1 Regression Loss We adopt a simple L1 loss for other
prediction heads of coordinates and keypoint visibilities.
With the ground truth and predicted values Y and Ŷ , we
have:

L1(Y, Ŷ ) =
1

N

C∑
c=1

||Y − Ŷ ||1. (5)

Skeleton Regularization We propose to use a skeleton
loss to encode prior information about the relative position-
ing of keypoints. For this purpose, we include bone length
regularization in the loss function. This term computes the
distance between the ground truth bone length and the pre-
dicted bone length. Specifically, given the ground truth key-
point locations Y and predicted keypoint locations Ŷ , we
first compute the skeleton bone lengths BL(Y ) and BL(Ŷ )
by calculating the Euclidean distance between connected
keypoint pairs. The skeleton loss is then calculated as the
Huber loss h(·) between the predicted bone lengths BL(Ŷ )
and ground truth bone lengths BL(Y ), resulting in:

SK(Ŷ , Y ) = h(BL(Ŷ ), BL(Y )). (6)
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This enforces the model to predict keypoint locations that
respect the biomechanical constraints of bone lengths in
the human skeleton. Matching the distribution of predicted
bone lengths to the ground truth, ensures awareness of the
spatial relationships between different joints. The skeleton
loss penalizes predicted keypoints that violate the physical
constraints of bone lengths, acting as a strong prior for plau-
sible human poses.

A.3. Metrics

We use mean per-joint position error (MPJPE), pose esti-
mation metric (PEM), and object keypoint similarity (OKS)
to evaluate our method. Formally, let Ŷ ∈ RJ×3 be the
predicted keypoints of a human, Y ∈ RJ×3 be the ground
truth, and vj ∈ 0, 1 be the visibility of each joint j. The
MPJPE metric is defined as:

MPJPE(Y, Ŷ ) =
1∑
j vj

∑
j∈[J]

vj ||yj − ŷj ||2. (7)

Note that MPJPE requires a one-to-one match between the
keypoints predictions and ground truth. Therefore, a Hun-

garian matching is performed to match the predicted and
annotated keypoints before calculating the MPJPE.

PEM further takes into account the matching accuracy
that is essentially a sum of the MPJPE over visible matched
keypoints with a penalty for unmatched keypoints. Note
that the unmatched keypoints include both the ground truth
keypoints without matching predicted keypoints and the
predicted keypoints without matching ground truth objects.

PEM(Y, Ŷ ) =

∑
i∈M ||yj − ŷj ||2 + C|U |

|M |+ |U |
, (8)

where M is a set of indices of matched keypoints, |U | is a
set of indices of unmatched keypoints, and C = 0.25 is a
constant penalty for an unmatched keypoint.

Additionally, we include the classic metric of OKS in
this work. The OKS metric is not computed per keypoint, it
is a relative metric computed for each human body. In OKS,
each ground truth object also has a scale s which we define
as the square root of the object segment area. OKS is com-
puted as the arithmetic average across all labeled keypoints

Figure 8. A visual demonstration of the baseline model (top row) and the proposed VoxelKP (bottom row) on matched human objects.
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Figure 9. A visual demonstration of the baseline model (top left) and the proposed VoxelKP (top right). Our method detects the human
objects that the baseline method fails to. The bottom line shows object-level keypoint localization performance.

in an instance.

OKS =

∑
j e

−
d2j

2s2k2
j

vj∑
i vj

(9)

where dj is the Euclidean distance between each corre-
sponding ground truth and detected keypoint, kj is a per-
joint constant provided by COCO [15]. The reported
OKS@KP is averaged over multiple OKS values, which are
calculated for OKS thresholds starting at 0.50, increasing in
steps of 0.05, and ending at 0.95.

B. Visual Results
We present additional visual results in this section. Majorly,
we show our method locates the keypoints with better preci-
sion in Fig. 8, and can detect the human objects better than
the baseline in Fig. 9.
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